Coupled Transmission Line and Its Applications

This article will cover

  • Calculation of Z and Y parameters of coupled transmission line.
  • Different configuration of the coupled transmission line used as two-port network.
  • Conversion between the standard S parameter and the mixed-mode S parameter.

Coupled Transmission Line Formulation

The Z parameter of a lossless transmission line is:

where $\theta=\beta l$ and $Z_0$ is the characteristic impedance.

Method 1

The schematic used for analysis is

Coupled Transmission Line

where $v_a^1(0)$ represent the voltage induced by current $i_1$ at position 0 of conductor a. The current relation between the normal and the mixed-mode is:

Combine two equations, we have

Symmetry can be used to derive other parameters.

Method 2

The mixed-mode S parameter of the coupled transmission line can be written as:

Because the line is TEM, the propagation constant and phase velocity are the same for both of these modes $v_p=\omega/\beta=1/\sqrt{L_eC_e}=1/\sqrt{L_oC_o}$.

With the conversion formula listed in Appendix, we may write the standard S parameter as:

where $Z_p=(Z_{0e}+Z_{0o})/2,Z_m=(Z_{0e}-Z_{0o})/2$. Note that the port definition of port 3 and port 4 are opposite in Appendix and the aforementioned analysis. To make the conclusion compatible, the transformation is modified as

The additional matrix $\mathbf{T}$ is used to swap port sequence.

The Y parameter can be expressed as

where $Y_p=(Y_{0o}+Y_{0e})/2,Y_m=(Y_{0o}-Y_{0e})/2$.

Two-Port Configuration

Two-Port Configuration

Type 3

Port 2 open

Port 4 open

Type 5

Port 2 open

Port 3 open

Type 6

Port 2 short

Port 3 short

Type 7

Port 2-3 connected

Type 8

Port 2 short

Port 4 open

It is an all-stop filter. An intuitive understanding is that when applied at the input, the signal is divided to the through and coupled ports, got reflected at these ports with open/short terminations, and out-of-phase combined at the isolation port, resulting in zero transmissions at all frequencies.

Appendix

Conversion Between the Standard S Parameter and Mixed-Mode S Parameter

Numbering of the ports is as follows:

4 port S parameter

The standard S parameter ($\mathbf{S^{std}}$) is

The mixed-mode S parameter ($\mathbf{S^{mm}}$) is:

The relationship between the two is:

Conversion Between the Standard Z Parameter and Mixed-Mode Z Parameter

For the full circuit, we may write

This is different from the half circuit analysis. The above equations can be put into matrix form.

which leads to

Instead if half circuit is used, we have

The result is modified to be the same as the S parameter.

Mathematica Derivation

Calculation of standard S parameter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Zmm = ( {
{-2 I Zo Cot[t], -2 I Zo Csc[t], 0, 0},
{-2 I Zo Csc[t], -2 I Zo Cot[t], 0, 0},
{0, 0, -I/2 Ze Cot[t], -I/2 Ze Csc[t]},
{0, 0, -I/2 Ze Csc[t], -I/2 Ze Cot[t]}
} );
M = ({
{1/2, -1/2, 0, 0},
{0, 0, 1/2, -1/2},
{1, 1, 0, 0},
{0, 0, 1, 1}
});
T = ( {
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 0, 1},
{0, 0, 1, 0}
} );
Zstd = T.Transpose[M].Zmm.M.T // MatrixForm

Derivation of type 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
St = ( {
{a, d, b, c},
{d, a, c, b},
{b, c, a, d},
{c, b, d, a}
} ); y = ( {
{V1},
{V2},
{V3},
{V4}
} ); x = ( {
{I1},
{I2},
{I3},
{I4}
} );
result = Solve[(y /. {V2 -> 0, V3 -> 0}) == St.x, {V1, I2, I3, V4}][[1]];
Y = Simplify[( {
{Coefficient[V1 /. result, I1], Coefficient[V1 /. result, I4]},
{Coefficient[V4 /. result, I1], Coefficient[V4 /. result, I4]}
} ) /. {a -> -(1/2) I Ze Cot[t] - 1/2 I Zo Cot[t],
b -> -(1/2) I Ze Csc[t] + 1/2 I Zo Csc[t],
c -> -(1/2) I Ze Csc[t] - 1/2 I Zo Csc[t],
d -> -(1/2) I Ze Cot[t] + 1/2 I Zo Cot[t]}];

Derivation of type 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
St = ( {
{a, d, b, c},
{d, a, c, b},
{b, c, a, d},
{c, b, d, a}
} ); y = ( {
{V1},
{V2},
{V3},
{V4}
} ); x = ( {
{I1},
{I2},
{I3},
{I4}
} );
result = Solve[(y /. {V4 -> V3}) == (St.x /. I4 -> -I3), {V1, V2, I3,
V3}];
Y = Simplify[( {
{Coefficient[(V1 /. result)[[1]], I1],
Coefficient[(V1 /. result)[[1]], I2]},
{Coefficient[(V2 /. result)[[1]], I1],
Coefficient[(V2 /. result)[[1]], I2]}
} ) /. {a -> -(1/2) I Ze Cot[t] - 1/2 I Zo Cot[t],
b -> -(1/2) I Ze Csc[t] + 1/2 I Zo Csc[t],
c -> -(1/2) I Ze Csc[t] - 1/2 I Zo Csc[t],
d -> -(1/2) I Ze Cot[t] + 1/2 I Zo Cot[t]}] ;
Y // MatrixForm

Parameter Extraction of the Coupled Transmission Line

Method 1

When configured in a way like this

image-20200313152331269

The S parameter of it should appear like

1
2
3
4
S = [a, b, c, d
b, a, d, c
c, d, a, b
d, c, b, a];

It is then converted using Matlab, as

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
polar2complex = @(mag, pha) mag .* exp(1i*pha*pi/180);
a = polar2complex(0.141, 68.196);
b = polar2complex(0.171, 66.122);
c = polar2complex(0.951, -20.174);
d = polar2complex(0.083, -128.593);

S = [a, b, c, d
b, a, d, c
c, d, a, b
d, c, b, a];

% convert to mixed-mode S parameter
M = 1/sqrt(2)*[1 -1 0 0
0 0 1 -1
1 1 0 0
0 0 1 1];
Smm=M*S*M';

length = 200e-6; % length of transmission line
freq = 30e9; % frequency of simulation
Z0 = 50; % characteristic impedance of the ports
C = 3e8; % speed of light in free space

differential = s2rlgc(Smm(1:2,1:2), length, freq, Z0)
Zo = real(differential.Zc)
Ao = differential.alpha*8.686
Ko = (C*differential.beta/2/pi/freq)^2
common = s2rlgc(Smm(3:4,3:4), length, freq, Z0)
Ze = real(common.Zc)
Ae = common.alpha*8.686
Ke = (C*common.beta/2/pi/freq)^2

Method 2

Alternatively, the mixed-mode parameter can be obtained from direct simulation. For the even/common mode

image-20200313153401014

For the odd/differential mode

image-20200313153444639

Note that the port impedance is changed accordingly.

Reference

For the derivation of coupled transmission line, Wilkinson power divider, quadrature hybrid, refer to

  • D. M. Pozar, Microwave Engineering. NJ, Hoboken: Wiley, 1998.

For the conversion between the standard S parameter and mixed-mode S parameter, refer to

  • W. R. Eisenstadt, B. Stengel and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-Mode S-Parameters. Norwood: Artech House, 2006
0%